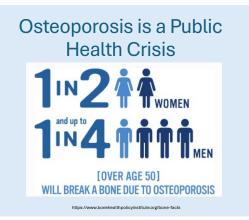
Unlocking the Secrets of Stronger Bones: The Future of Personalized Recommendations for Bone Health

Kelsey M. Mangano, PhD, RDN

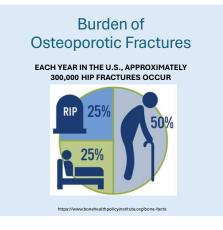
Associate Professor Nutrition Program Director Department of Biomedical and Nutritional Sciences

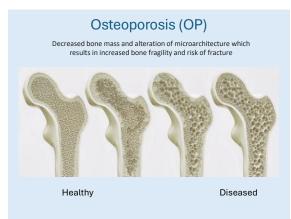
> Associate Director Center for Population Health Zuckerberg College of Health Sciences University of Massachusetts, Lowell

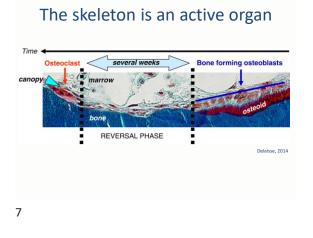
2


1

 Objectives


 Outline
 Nutrients, food groups and dietary patterns related to bone health


 Describe
 Mechanisms underlying associations between lifestyle choices and bone health


 Discuss
 How growing knowledge of the relationship between diet and bone health may shape personalized recommendations

3

Osteoporosis:

a pediatric disease with geriatric consequences

EARLY MENOPAUSE

SURGERY PITUITARY TUMOR

30 40 50 YEARS

RAPID BONE LOSER AT THE MENOPAUSE

ACCELERATED BONE LOSS - DISEASES - DRUGS

FRACTURE ZONE

70

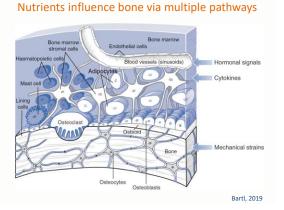
60

LOW PEAK BONE MASS - GENETIC - POOR DIET (CALCIUM) - INACTIVE

0 10 20

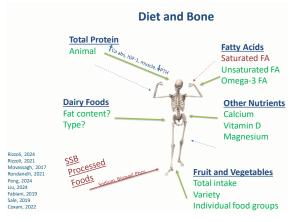
BONE MASS

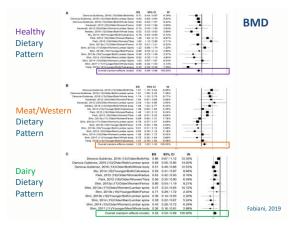
Determinants of Fracture Risk Osteoporotic Fracture Fall Osteoporosis Fracture Nutrition



8

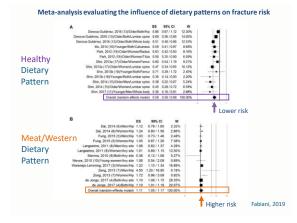
10

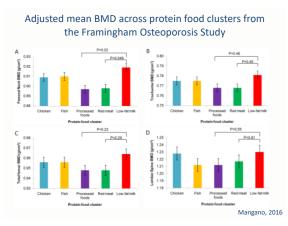


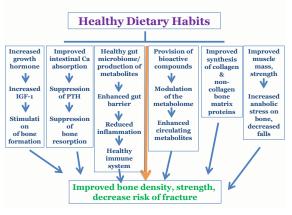



What is a "bone healthy" diet?

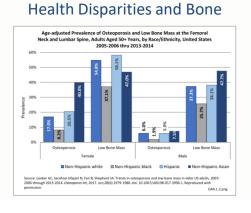
- Optimal dietary protein intake of 1.0–1.2 g/kg body weight/d with at least 20-25 g of high-quality protein at each main meal
- Adequate vitamin D intake at 800 IU/d to maintain serum 25hydroxyvitamin D levels >50 nmol/L
- Calcium intake of 1000 mg/d, alongside regular physical activity/exercise 3-5 times/week combined with protein intake near exercise
- Variety of nutrient dense, bioavailable sources


A consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (2014)

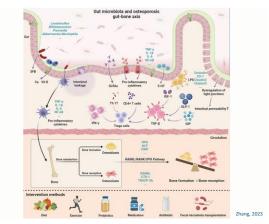




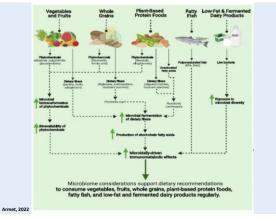
Does one dietary pattern or a bone specific diet meet the needs of all persons?

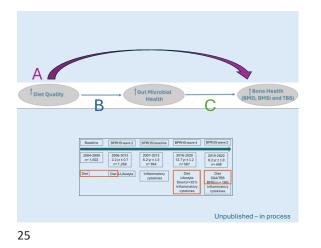

Would personalized data support the adaption of these diets for all people?

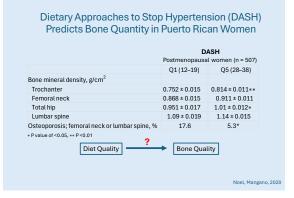
What should be considered when personalizing recommendations


- 1. Genetic ancestry
- 2. Dietary habits (cultural, religious, allergies)
- 3. Sex
- 4. Gut Microbiome
- 5. Metabolome
- 6. Underlying health parameters/conditions

20

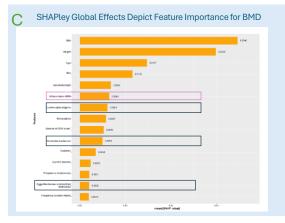

21

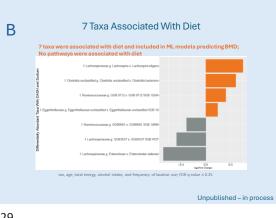


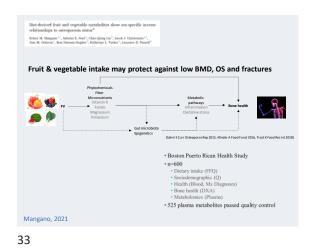

23

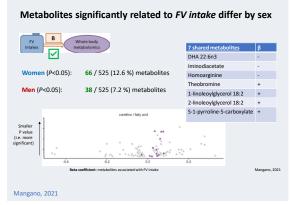
<figure><section-header>

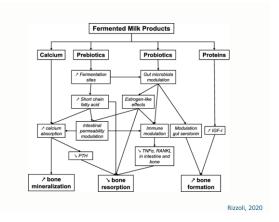
22

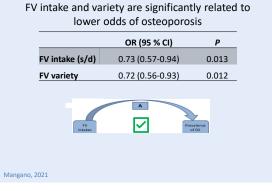





A DASH is related to BMD; not with Bone Quality


	Bone quality					Bone quantity - BMD Femoral Neck Total Hip			
	BMSi (n = 132)		TBS (n = 412)		(n = 414)		(n = 410)		
Diet quality	β ± SE	Р	β ± SE	Р	β ± SE	Р	β ± SE	Р	
Model 2 (fully adjusted)*									
DASH score	-0.16 ± 0.16	0.32	0.002 ± 0.001	0.86	0.0032 ± 0.0016	0.05	0.0045 ± 0.0018	0.01	
All models adjusted for BMSi, model 1 + serum TBS, model 1 + smokin, BMD, model 1 + height,	pentosidine and 25(g status					Unnut	blished – in pro	0.655	





Author	Year	Population	No	Age (years)	Duration (months)	Probiotics dose	Control	BMD	втм
Jafarnejad (<u>42</u>)	2017	Postmenopausal women with osteopenia	50	58	6	7 probiotic bacteria species 1 caps/day + Ca 500 mg + vitamin D 200UI/day	Placebo + Ca 500 mg + vitamin D 200UI/day	NS	Lower sCTX, BAP, PTH and TNFc
Lambert [43]	2017	Postmenopausal women with osteopenia	78	61.8	12	60 mg isoflavone aglycones/day and probiotic lactic acid bacteria + calcium 1200 mg/day, magnesium 550 mg/day, calcitriol 0.25 µg/day)	Placebo + calcium 1200 mg/day, magnesium 550 mg/day, calcitriol 0.25 µg/day)	Attenuated BMD loss (Δ%points: LS, 1.2; FN, 2.0; Tr, 2.1)	Lower sCTX
Nilsson [44]	2018	Postmenopausal women with osteopenia	90	76.3	12	L. reuteri 2 × 5 × 10e9 CFU/day	Placebo	Lower reduction (mean difference 95% C() in: - tibia total vBMD: 1TT 1.02% (0.02- 2.03), PP 0.93% (0.21-1.65). - trabecular bone volume fraction: PP 0.80% (0.13-1.46)	NS
Takimoto [45]	2018	Non-osteoporotic postmenopausal women	61	57.6	6	B. subtilis 3.4 × 10e9 CFU/day	3.4 × 10e9 CFU/day	Increased hip BMD: ∆%points: Hip, 1.7; LS, 0.9 (NS)	Lower uNTX
Jansson [46]	2019	Early postmenopausal women	249	58.6	12	Three Lactobacillus strains (Lactobacillus paracasei DSM 13434, Lactobacillus piantarum DSM 15312, and Lactobacillus piantarum DSM 15313) 1 × 10e10 CFU/day	Placebo	Attenuated BMD loss LS: mean difference 95% CI: 0.71%, (0.06–1.35)	NS

Metabolites	significantly related to	OS statu	<i>ıs</i> differ	by sex	
Whole body metabolomics	Prevalence of OS				
Women (P<0.05):	33 / 525 (6.3 %) metabolites	•		D HORMONE TES – LOWER with OS	
Men (<i>P</i> <0.05):	40 / 525 (7.6 %) metabolites			ED CHAIN AA TES – HIGHER with OS	
2 overlapping me	etabolites	Women		Men	
2 overlapping me N-(2-furoyl)glycii		Women Higher w	rith OS	Men Higher with OS	
N-(2-furoyl)glycii					
N-(2-furoyl)glycii	10	Higher w		Higher with OS	202

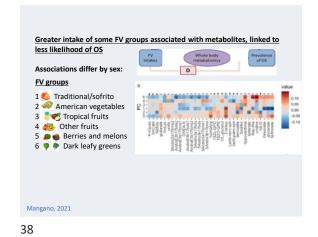
 Separation of metabolites

 with other cohorts

 Separation of metabolites

 Metabolites

 Separation of metabolites


 Metabolites

37

Take Home Messages

- Nutrition Plays a Key Role in Bone Health
 - A well-balanced diet rich in protein, calcium, vitamin D, and a variety
 of nutrient-dense foods (highlighting fruits and vegetables) supports
 bone density, strength, and overall skeletal health, due to their
 positive impact on the gut microbiome and their ability to alter the
 human metabolome.
- Dietary Patterns Influence Fracture Risk
 - Adopting a "bone-healthy" dietary pattern, such as the Mediterranean or DASH diet, is associated with improved bone mineral density (BMD) and a lower risk of osteoporosis-related fractures.
- Personalized Nutrition is the Future
- Individual factors like genetics, gut microbiome, cultural dietary habits, and metabolic profiles should be considered when creating personalized dietary recommendations for optimal bone health.

39

